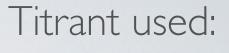
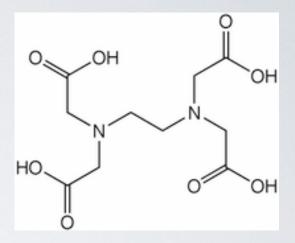
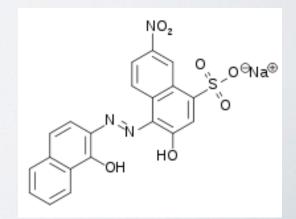

COMPLEXATION TITRATIONS SDSU CHEM 251

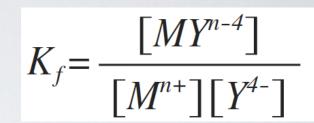
CHELATING AGENTS

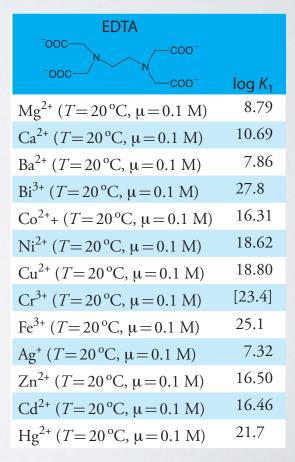

- Chelating agents complex metal ions
- Metal ions act as Lewis acids and can accept a pair of electrons from a donor ligand
- Chelating agents form more than one bond with a metal ion
- Bonds are typically between N or O and the metal
- Can prevent the metal from undergoing other reactions


complex

COMPLEXATION TITRATIONS


- Because chelating agents can react with metal cations, they can be used to quantify the amount of a metal free in a solution.
- A common example is the titration of calcium with ethylenediaminetetraacetic (EDTA).
- The indicator is a second chelator that undergoes a color change as it loses the metal ion to the stronger EDTA chelator.


Indicator used: Eriochrome Black T



COMPLEXATION

- The reaction between a metal ion (Mⁿ⁺) and EDTA (Y⁴⁻) always occurs in a 1:1 ratio.
- Only the fully deprotonated form of EDTA (Y4-) is capable of chelating the metal ions.
- The complexes are very stable and the formation constants (K_f) values are listed as the log K_f values.

 $M^{n+} + Y^{4-} \rightleftharpoons MY^{n-4}$

SOLUTION CONSIDERATIONS

- The pH of the solution has a significant impact on the formation constant.
- Only the fully deprotonated EDTA is capable of complexing metal cations.
- The proportion of EDTA that is fully deprotonated is denoted by (α_{Y4-}) .
- In knowing the <u>formal concentration of EDTA</u> and the <u>pH</u> we can use the conditional formation constant (K_f) in our calculations.

	Table 9.10	Values of $lpha_{Y^{4-}}$ for Selected pH Levels						
	рН	α_{Y} 4–	рН	α_{Y} 4–				
	1	$1.9 imes 10^{-18}$	8	5.6×10^{-3}				
f	2	$3.4 imes 10^{-14}$	9	5.4×10^{-2}				
	3	2.6×10^{-11}	10	0.37				
	4	$3.8 imes 10^{-9}$	11	0.85				
	5	3.7×10^{-7}	12	0.98				
	6	$2.4 imes 10^{-5}$	13	1.00				
	7	5.0×10^{-4}	14	1.00				

 $K_{f} = \begin{bmatrix} CdY^{2-} \\ CdY^{2-} \end{bmatrix}$ $\begin{bmatrix} Y^{4-} \end{bmatrix} = \alpha_{Y^{4-}} \times \begin{bmatrix} EDTA \end{bmatrix}^{r_{4-}C_{EDTA}}$ $K_{f}' = K_{f} \times \alpha_{Y^{4-}}^{K_{f}'} \equiv \frac{K_{f} \times \alpha_{Y^{4-}}}{\begin{bmatrix} MY^{n-4-} \\ CdY^{2-} \end{bmatrix}}$ $\begin{bmatrix} MY^{n-4-} \\ CdY^{2-} \end{bmatrix}$

SOLUTION CONSIDERATIONS

- A further consideration of the solution conditions comes from the choice of buffers for the titration.
- Some of the buffers (required to maintain a stable pH) can complex with metal cations.
- These complexes influence the amount of free metal $[M^{n+}]$ in the equilibria, further altering the conditional formation constant (K_{f}'') .

Table 9.12 Values of $lpha_{M^{2+}}$ for Selected Concentrations of Ammonia								
[NH ₃] (M)	$lpha_{Ca}$ 2+	$lpha_{Cd}$ 2+	$lpha_{Co}$ 2+	$lpha_{Cu^{2+}}$	$lpha_{Mg}$ 2+	$lpha_{\sf Ni}$ 2+		
1	$5.50 imes10^{-1}$	6.09×10^{-8}	1.00×10^{-6}	3.79×10^{-14}	$1.76 imes 10^{-1}$	$9.20 imes 10^{-10}$		
0.5	$7.36 imes 10^{-1}$	1.05×10^{-6}	2.22×10^{-5}	6.86×10^{-13}	4.13×10^{-1}	3.44×10^{-8}		
0.1	9.39×10^{-1}	3.51×10^{-4}	6.64×10^{-3}	4.63×10^{-10}	8.48×10^{-1}	5.12×10^{-5}		
0.05	9.69×10^{-1}	2.72×10^{-3}	3.54×10^{-2}	$7.17 imes 10^{-9}$	$9.22 imes 10^{-1}$	6.37×10^{-4}		
0.01	9.94×10^{-1}	8.81×10^{-2}	3.55×10^{-1}	3.22×10^{-6}	9.84×10^{-1}	4.32×10^{-2}		
0.005	$9.97 imes 10^{-1}$	$2.27 imes 10^{-1}$	$5.68 imes 10^{-1}$	3.62×10^{-5}	9.92×10^{-1}	1.36×10^{-1}		
0.001	9.99×10^{-1}	6.09×10^{-1}	8.84×10^{-1}	4.15×10^{-3}	9.98×10^{-1}	$5.76 imes 10^{-1}$		

 $\begin{bmatrix} M^{n+} \end{bmatrix} = \alpha_{M^{n+}} \times C_{M^{n+}}$ $K''_{f} = K_{f} \times \alpha_{Y^{t-}} \times \alpha_{M^{n+}} = \frac{\begin{bmatrix} MY^{n-4} \end{bmatrix}}{C_{M^{n+}} \begin{bmatrix} EDTA \end{bmatrix}}$