REDOX REACTIONS SDSU CHEM 251

OXIDATION & REDUCTION

- REDOX reactions involve the transfer of electrons from one species to another.
- The total reaction can be broken into two half-reactions:
 - A reduction: $B + e^{-} \rightarrow B^{-}$
 - An **ox**idation: $A \rightarrow A^+ + e^-$
- The reaction is balanced by the number of electrons involved in the reaction.

REACTION CONDITIONS

- In order for a REDOX reaction to proceed certain conditions must be met:
 - One reactant must be able to be reduced.
 - One reactant must be able to be oxidized.
 - The net potential for the REDOX reaction must be positive (E°_{cell} > 0V)

CELL POTENTIALS

- The cell potential for the REDOX reaction can be calculated from the <u>standard reduction potentials</u> for the two half reactions (tabulated): E°_{cell} = E°₊ - E°₋
- Where E°₊ is the standard reduction potential for the reduction half reaction, and E°₋ is the standard reduction potential for the oxidation half reaction.
- An important note is that the potential for the oxidation half of the reaction is treated as a reduction in the equation.

IDENTIFY THE PROPER REACTANT

If a solution contains Fe³⁺, which of the reactants listed below could be used to reduce Fe³⁺ to Fe²⁺?

 $\frac{\text{Reduction Potentials}}{\text{Fe}^{3+} + e^- \rightleftharpoons \text{Fe}^{2+} \quad \text{E}^\circ = 0.771 \text{ V}}$ $\frac{\text{MnO}_4^- + e^- \rightleftharpoons \text{MnO}_4^{2-} \quad \text{E}^\circ = 0.56 \text{ V}}{\text{IrCl}_6^{2-} + e^- \rightleftharpoons \text{IrCl}_6^{3-} \quad \text{E}^\circ = 1.026 \text{ V}}$

 $\frac{Options}{MnO_4}$ MnO_4^2 $IrCl_6^2$ $IrCl_6^3$