CURIOUS PH PROBLEM

CHEM 25 | SDSU

CURIOUS PROBLEM

What is the pH of a solution of a solution with 7.93×10-8 M NaOH?

SIMPLE PH PROBLEM?

What is the pH of a solution of NaOH with a concentration of 7.93×10⁻⁸ M?

Standard approach:

[NaOH] =
$$7.93 \times 10^{-8} M$$
 pH=?
 $14 = pH + pOH$
 $pOH = -log[OH^-]$
 $pOH = -log[7.93 \times 10^{-8}] = 7.10$
 $pH = 14 - 7.10$
 $pH = 6.90 \dots$ so NaOH is an acid???

What went wrong with this calculation?
We neglected to account for the contribution of water (dissociation into H⁺ and OH⁻) and that contribution to the pH.

$$K_{W} = [H^{+}][OH^{-}] = 1.0 \times 10^{-14}$$

NOT SO SIMPLE PH PROBLEM

What is the pH of a solution of NaOH with a concentration of 7.93 × 10⁻⁸ M?

$$[NaOH] = 7.93 \times 10^{-8} M$$
 pH=?

Equilibria:

$$NaOH \rightarrow Na^+ + OH^-$$

and
$$H_2O \Leftrightarrow H^+ + OH^ K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$$

$$[Na^+] = 7.93 \times 10^{-8} M$$

$$\left[\mathbf{H}^{+} \right] = x$$

$$[OH^{-}] = 7.93 \times 10^{-8} M + x$$

$$K_w = [H^+][OH^-] = (x)(7.93 \times 10^{-8} + x) = 1.0 \times 10^{-14}$$

$$1.0 \times 10^{-14} = x^2 + 7.93 \times 10^{-8} (x)$$

$$0 = x^2 + 7.93 \times 10^{-8} (x) - 1.0 \times 10^{-14}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-7.93 \times 10^{-8} + \sqrt{(7.93 \times 10^{-8})^2 - 4(1)(-1.0 \times 10^{-14})}}{2(1)}$$

$$x = [H^+] = 6.79 \times 10^{-8} M$$
 pH = $-\log(6.79 \times 10^{-8} M) = 7.17$

First identify the relevant equilibria and see how they are related, in this case OH⁻ is in common in both reactions.

Then solve for the common unknown value (x).

CONTRIBUTION OF WATER

- The autoprotolysis of water will contribute to the pH of a solution in select cases
- The concentration of the acid/base determines the influence:
 - [H⁺] or [OH⁻]≥ 10⁻⁶ water does not contribute
 - [H⁺] or [OH⁻] \leq 10⁻⁸ solution is pH 7
 - $10^{-6} \ge [H^+]$ or $[OH^-] \ge 10^{-8}$ autoprotolysis is important