## CURIOUS PH PROBLEM CHEM 25I SDSU

## CURIOUS PROBLEM

What is the pH of a solution of a solution with $7.93 \times 10^{-8} \mathrm{M} \mathrm{NaOH}$ ?

## SIMPLE PH PROBLEM?

What is the pH of a solution of NaOH with a concentration of $7.93 \times 10^{-8} \mathrm{M}$ ?

$$
\begin{aligned}
& \quad \text { Standard approach: } \\
& {[\mathrm{NaOH}]=7.93 \times 10^{-8} \mathrm{M} \mathrm{pH}=?} \\
& 14=\mathrm{pH}+\mathrm{pOH} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=-\log \left[7.93 \times 10^{-8}\right]=7.10 \\
& \mathrm{pH}=14-7.10 \\
& \mathrm{pH}=6.90 \ldots \text { so } \mathrm{NaOH} \text { is an acid??? }
\end{aligned}
$$

What went wrong with this calculation?
We neglected to account for the contribution of water (dissociation into $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$) and that contribution to the pH .

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

# NOT SO SIMPLE PH PROBLEM 

 What is the pH of a solution of NaOH with a concentration of $7.93 \times 10^{-8} \mathrm{M}$ ?$[\mathrm{NaOH}]=7.93 \times 10^{-8} \mathrm{M} \quad \mathrm{pH}=$ ?
Equilibria:
$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
and $\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \quad K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[\mathrm{Na}^{+}\right]=7.93 \times 10^{-8} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=x$
$\left[\mathrm{OH}^{-}\right]=7.93 \times 10^{-8} M+x$
First identify the relevant equilibria
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=(x)\left(7.93 \times 10^{-8}+x\right)=1.0 \times 10^{-14}$
$1.0 \times 10^{-14}=x^{2}+7.93 \times 10^{-8}(x)$
$0=x^{2}+7.93 \times 10^{-8}(x)-1.0 \times 10^{-14}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-7.93 \times 10^{-8}+\sqrt{\left(7.93 \times 10^{-8}\right)^{2}-4(1)\left(-1.0 \times 10^{-14}\right)}}{2(1)}$
$x=\left[\mathrm{H}^{+}\right]=6.79 \times 10^{-8} \mathrm{M} \quad \mathrm{pH}=-\log \left(6.79 \times 10^{-8} \mathrm{M}\right)=7.17$

Then solve for the common unknown value ( $x$ ).

## CONTRIBUTION OF WATER

- The autoprotolysis of water will contribute to the pH of a solution in select cases
- The concentration of the acid/base determines the influence:
- $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right] \geq 10^{-6}$ water does not contribute
- $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right] \leq 10^{-8}$ solution is pH 7
- $10^{-6} \geq\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right] \geq 10^{-8}$ autoprotolysis is important

