BUFFERS CHEM 251 SDSU

PH CHANGES

- The pH of a solution can be easily changed:
 - Addition of acid or base
 - Dilution of solution change [H⁺]
- Numerous chemical reactions/equilibria change with changes in pH.
- These changes can have a negative effect on an analysis or reaction.

SOLUTION PHVALUES

- We previously saw that the pH of various 36 mM solutions to be:
 - $H_2CO_3: pH = 3.90$
 - NaHCO₃: pH = 8.34
 - $Na_2CO_3: pH = 11.43$
- What would be the pH of a solution of 20 mM H₂CO₃ and 16 mM NaHCO₃?
- What about a solution of 16 mM H₂CO₃ and 20 mM NaHCO₃?

BUFFERS

- Buffers are used to maintain a near constant pH value.
- Buffers are made from a combination of an acid (or base) and its conjugate salt.
- The ratio of these compounds will determine the pH and keep it constant as solution conditions change.
- The effective pH range of a buffer is related to the pK_a of the acid (base).
- Buffers will not infinitely maintain a pH value, they can be exhausted.
- Carbonic acid (H₂CO₃) and bicarbonate (HCO₃⁻) act as a buffer in blood.

BUFFER RANGE

- From the Henderson-Hasselbach equation we see that the pH of a buffer will depend directly on the pK_a
- Changes in the ratio of [A⁻] to [HA] will alter the pH of the buffer

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

[A-]/[HA]	pH =
100:1	pK _a + 2
0:	pK _a + 1
1:1	рК _а
1:10	pKa - I
1:100	рК _а - 2

QUESTION

Which weak acid/base would be the best choice to prepare a buffer with a pH of 5.22?

2-Nitrophenol, $pK_a = 7.230$ 3-Nitrobenzoic acid, $pK_a = 3.449$ Trimethylamine, $pK_a = 9.799$ Acetic acid, $pK_a = 4.756$

BUFFERS IN TITRATIONS

- When titrating a weak acid with a strong base a buffer will be naturally formed as some of the weak acid is consumed
- This causes a slow change in the pH when the it is near the pK_a of the acid

 $H_{2}A + NaOH \rightleftharpoons Na^{+} + HA^{-} + H_{2}O$ $HA^{-} + NaOH \rightleftharpoons Na^{+} + A^{2-} + H_{2}O$