REDOX TITRATION CALCULATIONS SDSU CHEM 251

CALCULATING POTENTIAL

- The cell potential for the solution will depend on the conc. of the analyte (or titrant) in each oxidation state.
- As the titration progresses the concentrations will change, altering the potential.
- Three distinct situation arise for the calculations.
- By convention the reference electrode is taken to be E-(anode) , the titration cell is E+ (cathode).

A 15 mL solution of Ru²⁺ (40 mM) can be oxidized by reaction with Au³⁺. A titration is performed with a saturated calomel reference electrode (S.C.E.) as the anode and a platinum wire as a cathode. Determine the cell potential at various titration volumes, below, if the titrant is made of 12 mM Au³⁺.

What would be the cell potential at the following titration volumes:

- a) 15.00 mL b) 25.00 mL
- c) 32.53 mL

BEFORE THE EQUIVALENCE POINT

- The cell potential is not calculated before the titrant is added.
- As titrant is added the concentration of the analyte product increases.
- Knowing the conc. of the analyte in both oxidation states we can calculate $E_{\rm +}$ for the cell and thus $E_{\rm cell}$.
- At V = $\frac{1}{2}$ V_{eq} E₊=E^o
- Calculation can be done for the titrant species, we get the same E_{cell} , but it is much more difficult.

A 15 mL solution of Ru²⁺ (40 mM) can be oxidized by reaction with Au³⁺. A titration is performed with a saturated calomel reference electrode (S.C.E.) as the anode and a platinum wire as a cathode. Determine the cell potential at various titration volumes, below, if the titrant is made of 12 mM Au³⁺.

What would be the cell potential at the following titration volumes:

a) 15.00 mL
b) 25.00 mL
c) 32.53 mL

ATTHE EQUIVALENCE POINT

- When we reach the equivalence point all the analyte has been reacted with titrant.
- But some reverse reaction occurs both analyte and titrant undergo some back-reaction: $A^+ + 2T^{3+} \rightleftharpoons A^{3+} + 2T^{2+}$
- Calculation for E₊ is based on both half-reactions (weighted by their number of e⁻).

A 15 mL solution of Ru²⁺ (40 mM) can be oxidized by reaction with Au³⁺. A titration is performed with a saturated calomel reference electrode (S.C.E.) as the anode and a platinum wire as a cathode. Determine the cell potential at various titration volumes, below, if the titrant is made of 12 mM Au³⁺.

What would be the cell potential at the following titration volumes:

a) 15.00 mL
b) 25.00 mL
c) 32.53 mL

AFTER THE EQUIVALENCE POINT

- \bullet Past V_{eq} the analyte has been fully reacted and there is an excess of titrant.
- At this point we know the concentrations of the titrant better than those of the analyte.
- We will use the half-reaction of the titrant species to determine $\mathsf{E}_{\mathsf{cell}}$
- At V= $2V_{eq}$ E₊ = E^o (for the titrant)

A 15 mL solution of Ru²⁺ (40 mM) can be oxidized by reaction with Au³⁺. A titration is performed with a saturated calomel reference electrode (S.C.E.) as the anode and a platinum wire as a cathode. Determine the cell potential at various titration volumes, below, if the titrant is made of 12 mM Au³⁺.

What would be the cell potential at the following titration volumes:

- a) 15.00 mL
- b) 25.00 mL
- c) 32.53 mL