ACID-BASE TITRATIONS STRONG ACID \& BASE

 CHEM 25I SDSU
STRONG TITRANT, STRONG

ANALYTE

- The simplest acid-base titration involves a strong analyte (e.g. HNO_{3}) and a strong titrant (e.g. KOH).
- The fact that the acid/base dissociate completely makes the calculation simpler - we do not need to involve the K_{a} values.
- Assume that the reaction goes to completion at all concentrations.

SAMPLE PROBLEM

Plot the titration curve for the titration of 15.0 mL of 25.0 mM KOH with $10.0 \mathrm{mM} \mathrm{HNO}_{3}$.

Determine the pH after the following volumes of titrant have been added:
A) 0.00 mL of titrant
B) 25.00 mL of titrant
C) 37.50 mL of titrant
D) 42.00 mL of titrant

PH BEFORE VEQ

- Before the $V_{\text {eq }}$ the analyte will be the dominant species in solution.
- Any titrant added will react immediately and not directly contribute to the pH .
- The pH of the solution is only due to the remaining analyte need to account for dilution and loss of moles.

SAMPLE PROBLEM

Plot the titration curve for the titration of 15.0 mL of 25.0 mM KOH with $10.0 \mathrm{mM} \mathrm{HNO}_{3}$.

Determine the pH after the following volumes of titrant have been added:
A) 0.00 mL of titrant B) 25.00 mL of titrant
C) 37.50 mL of titrant
D) 42.00 mL of titrant

PH ATTHE EQUIVALENCE POINT

- Equal moles of acid and base are present in solution.
- The acid and base dissociate fully and the H^{+}and OH^{-}react completely.
- The pH is determined by the dissociation of water $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \mathrm{pH}=7.00$.

SAMPLE PROBLEM

Plot the titration curve for the titration of 15.0 mL of 25.0 mM KOH with $10.0 \mathrm{mM} \mathrm{HNO}_{3}$.

Determine the pH after the following volumes of titrant have been added:
A) 0.00 mL of titrant
B) 25.00 mL of titrant
C) 37.50 mL of titrant
D) 42.00 mL of titrant

PH AFTER VEQ

- Once the titration is past the $\mathrm{V}_{\text {eq }}$ the titrant dominates the pH of the solution.
- As the titrant is strong there is no back reaction - the concentration of the excess titrant directly determines the pH .
- Solution pH will approach but never equal the pH of the titrant.

SAMPLE PROBLEM

Plot the titration curve for the titration of 15.0 mL of 25.0 mM KOH with $10.0 \mathrm{mM} \mathrm{HNO}_{3}$.

Determine the pH after the following volumes of titrant have been added:
A) 0.00 mL of titrant
B) 25.00 mL of titrant
C) 37.50 mL of titrant
D) 42.00 mL of titrant

TITRATION CURVE

Plot the titration curve for the titration of 15.0 mL of 25.0 mM KOH with 10.0 $\mathrm{mM} \mathrm{HNO}_{3}$.

